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The purpose of this note is to prove a version of analytic Fredholm theory, and examine
a special case.

Theorem 1.1 (Analytic Fredholm Theory). Let Ω be a connected open subset of C and
suppose T (λ) is an analytic family of Fredholm operators on a Hilbert space H. Then either

(i) T (λ) is not invertible for any λ ∈ C, or

(ii) There exists a discrete set S ⊆ Ω such that T (λ) is invertible for all λ 6∈ S and
furthermore T−1(λ) extends to a meromorphic function on all of Ω. Furthermore,
every operator appearing as a coefficient of a term of negative order is finite rank.

By analytic, we mean that for every λ0 ∈ Ω, T is given by a power series

T (λ) =
∞∑
n=0

(λ− λ0)nTn

converging in the operator norm, where Tn : H → H are bounded. Similarly, we say that T
is meromorphic if around every λ0 ∈ Ω there is a Laurent series

T (λ) =
∞∑

n=−N

(λ− λ0)nTn

converging in a punctured neighbourhood of λ0.
We will also prove:

Proposition 1.2. Suppose T : H → H is a self-adjoint, non-negative bounded operator.
Suppose that T − λ is Fredholm for all λ ∈ Ω, where Ω ⊂ C is a connected open set. Then
(T − λ)−1 has a meromorphic extension to a family with only simple poles, and the residue
is −1 times the projection onto the kernel of T − λ0, where λ0 is a pole.

Proof of Analytic Fredholm Theory. We divide the proof into several steps.

1. Show that if T−1(λ) exists as an operator at a point, it is analytic in a neigbhourhood
of that point.
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2. Show that if T−1(λ) has a meromorphic extension near a point, it is analytic in a
punctured neigbhourhood of that point (this step actually applies to any meromorphic
family).

3. Show that if T−1(λ) has a meromorphic extension to a connected open set U on which
T (λ′) is invertible for at least one λ′ ∈ U , then the points where T−1(λ) are analytic
are in fact points where the inverse actually exists, and the points where it fails to be
analytic form a discrete set. In particular, this is true if U contains λ0.

4. Show that T−1(λ) has a meromorphic extension to the union Ω′ of all connected open
sets U containing λ0 on which T−1(λ) has an extension, and that Ω′ is open, connected,
and non-empty.

5. Show that Ω′ = Ω. This last step is the hardest.

Step 3 shows that the points at which T−1(λ) fails to exist in Ω′ are discrete, and Step 5
will show that Ω′ = Ω and complete the proof of existence. We will address the finite-rank
of the negative-order coefficients later.

Step 1. Fix λ1 ∈ Ω for which T−1(λ) exists, and write

T (λ) =
∞∑
n=0

(λ− λ1)nTn.

The Cauchy-Hadamard theorem applies, and in particular there exists A,B such that ‖Tn‖ ≤
ABn. Since T (λ1) = T0 is invertible, we may recursively define operators Sn by S0 = T−10

and
Sn = −(Sn−1T1 + · · ·S0Tn)T−10 .

Define b0 = ‖S0‖ and
bn = ‖S0‖(bn−1AB1 + · · · b0ABn).

It is clear that we have the bound bn ≤ CDn for some C,D, and that ‖Sn‖ ≤ bn ≤ CDn. In
particular, the series

S(λ) =
∞∑
n=0

(λ− λ1)Sn

converges in a small neighbourhood and by construction S(λ)T (λ) = 1 wherever both are
defined. Since T−1(λ) exists for λ near λ1 (GL(H) is open), S(λ) = T−1(λ) near λ1. In
particular, T−1(λ) is analytic near λ1.

Step 2. Suppose that T−1(λ) has a meromorphic extension near a point λ1. Then

T−1(λ) =
∞∑

n=−N

(λ− λ1)nTn,
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and for λ2 near λ1,

T−1(λ) =
∞∑

n=−N

(λ− λ2 + (λ2 − λ1))nTn.

If N ≤ 0 then we may expand (λ − λ2 + (λ2 − λ1))n for n ≥ 0 using the binomial theorem
and regroup terms (since the sum converges absolutely by Cauchy-Hadamard) to see that
T−1(λ) is analytic near λ2. If N > 0, then we do the same if n ≥ 0, and if n < 0 (and λ
close enough to λ2, we may expand (λ−λ2 + (λ2−λ1))n as a geometric series and rearrange
to see that T−1(λ) is analytic near λ2. In particular, T−1(λ) is analytic (and in particular
meromorphic) near λ2. This yields two results: the first is that the set of points for which
T−1(λ) is meromorphic is open. The second is that inside the set for which T−1(λ) has a
meromorphic extension, the set points for which T−1(λ) is not analytic is discrete.

Step 3. From Step 2 we know that T−1(λ) has an analytic extension to a set S ⊆ U
with discrete complement. Since from Step 1, the identities

T−1(λ)T (λ) = 1 = T (λ)T−1(λ)

hold on at least a small open subset λ′ ∈ V ⊂ U , and T−1(λ) makes sense as an analytic
function on the connected open set Ω′ \ {S} ⊆ Ω′ it follows that the identity persist to all of
U \ {S}. Indeed, for instance,

〈u(T−1(λ)T (λ)− 1)v〉
(for u, v ∈ H) is a C-valued analytic function which is 0 on an open subset, and thus 0 every-
where. Thus not only does the meromorphic extension of T−1(λ) fail to be analytic except
on an isolated number of points, but T−1(λ) is actually the inverse if T−1(λ) is analytic and
fails to exist at the same points that it fails to be analytic.

Step 4. Let {Uα} be the collection of all connected open sets containing λ0 for which
T−1(λ) has a meromorphic extension to Uα. Certainly Ω′ =

⋃
α Uα is open. It is non-empty

since by Step 1 is contains a neighbourhood of λ0. It is connected since every point in Ω′ can
be connected via a continuous path to λ0. It remains to show that T−1(λ) has a meromorphic
extension to Ω′. It suffices to show that if Uα, Uα′ are open sets as above with non-empty
intersection, then the extensions T−1(λ) agree on Uα ∩Uα′ . Indeed, by Step 3, T−1(λ) is the
actual inverse of T (λ) at all but discretely many points in Uα∩Uα′ , and so must agree. Thus
the meromorphic extensions of T−1(λ) must agree everywhere on Uα ∪ Uα′ .

Step 5. Let λ1 ∈ ∂Ω′.1. We need only show that λ1 ∈ Ω′, since then Ω′ is open, closed,
and non-empty, and thus all of Ω. Without loss of generality we may take λ1 = 0. We
have to show that T−1(λ) extends to a meromorphic function around λ = 0. T (λ) is a
continuous family of Fredholm operators which is invertible at some point λ0. In particular,
the index of T (λ) is 0 everywhere. Write T = T (0). Set V = kerT⊥ and W = kerT , and

1By this we mean the boundary with respect to the subspace topology on Ω, i.e. ∂Ω′ ∩ Ω, where here ∂
is intepreted as the boundary as a subset of C
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set V ′ = imT and W ′ = imT⊥. Since T is Fredholm of index 0, V,W, V ′,W ′ are all closed,
V +W = V ′+W ′ = H and T : V → V ′ is an isomorphism. We denote by ΠX the projection
onto the subspace X ⊆ H. Notice that if U is any neighbourhoodof 0, then U ∩Ω′ 6= ∅, and
since T (λ) is invertible at all but a discrete number of points in Ω’ (Step 3), it is invertible
at at least one point in U ∩ Ω′ ⊆ U .

We divide the rest of Step 5 substeps (i) and (ii).

Substep i) In this substep we find a locally invertible analytic family of operators R(λ)
such that R(λ)T (λ) looks like the matrix:(

A(λ) 0
B(λ) 1

)
, (1)

where the first row and column represent W and the second row and column represent V .
The point of this is that we can actually write down a nice inverse for this matrix, at least
formally.

Write
T (λ) = T (λ)ΠV + T (λ)ΠW .

Then both summands are analytic and we have

T (λ) =
∞∑
n=0

λnTnΠV +
∞∑
n=0

λnTnΠW .

By assumption T (0)ΠV = TΠV is invertible as an operator from V onto V ′. Thus the
analytic family V → V ′ given by

T (λ)ΠV =
∞∑
n=0

λnTnΠV

is invertible for small λ. Call this inverse Q(λ) : V → V ′ (which is analytic by an argument
like in Step 1. We have of course generalized to the case where the domain and codomain are
not the same; however they are still isomorphic). We extend Q(λ) to an analytic family of
operatorsH → H by multiplying on the right by ΠV ′ . The new operator, Qnew(λ) = Q(λ)ΠV ′

we will henceforth call Q(λ), too, in order to reduce unnecessary notation.
Since T has index 0, dimW = dimW ′ < ∞, and we may pick an isomorphism P of

W ′ onto W . Of course PTΠV = 0. We show that we can extend this to small λ, i.e. find
an analytic function P (λ) with P (0) = P for which P (λ)T (λ)ΠV = 0. Define recursively
P0 = P and

Pk+1 = (ΠW − (Pn−1T1 + · · ·P0Tn))Q0.

Similiar to Step 1, setting

P (λ) =
∞∑
n=0

λnPn
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defines an analytic family. Since Q0T0ΠV = ΠV and ΠWΠV = 0, P (λ)T (λ)ΠV = 0.
Now set R(λ) = Q(λ) + P (λ). Since R(0) is invertible, R(λ) is locally invertible with

analytic inverse (by Step 1, for instance).
Set A(λ) = ΠWR(λ)T (λ)ΠW . Then A(λ) can be interpreted as an analytic family of

operators from W → W , i.e. A(λ) is an analytic family of square matrices. Similarly, set
B(λ) = ΠVR(λ)T (λ)ΠW . Observe that

ΠWR(λ)T (λ)ΠV = ΠW (Q(λ)T (λ) + P (λ)T (λ))ΠV = ΠWΠV + 0 = 0,

and similarly
ΠVR(λ)T (λ)ΠV = ΠV ΠV = ΠV .

Writing
R(λ)T (λ) = (ΠV + ΠW )R(λ)T (λ)(ΠV + ΠW )

arrives at the matrix representation (1).
Substep ii) From the matrix representation, it is easy to see that formally an inverse

should be given by the operator corresponding to(
A−1(λ) 0

−B(λ)A−1(λ) 1

)
. (2)

In the rest of this substep, we show that this is actually a well-defined meromorphic extension
of (R(λ)T (λ))−1 and show that this gives a well-defined meromorphic extension of T (λ)−1.

Since W,W ′ are fixed finite dimensional spaces, A−1(λ) can be written formally in the
form A−1(λ) = p(λ)−1 Adj(A(λ)) where p(λ) = detA(λ), and Adj(A(λ)) is the classical
adjugate matrix. Since A(λ) is certainly analytic, p(λ) is a C-valued analytic function, and
Adj(A(λ)) is analytic. Now p(λ) is not identically 0. Indeed, if it were then A(λ) would
not be invertible anywhere. This means, using (1), that neither is R(λ)T (λ). Since R(λ) is
invertible, this would mean T (λ) is not invertible anywhere, which contradicts the fact that
T (λ) is invertible at at least one point in any neighbourhood of 0.

So p(λ) is holomorphic and not identically 0, and so p(λ)−1 is meromorphic, and thus
A−1(λ) is meromorphic. Moreover, since A is a square matrix, all coefficients of terms of
negative order in the Laurent expansion of A(λ) are finite-rank operators.

In particular, the operator family

S(λ) = A−1(λ)−B(λ)A−1(λ) + ΠV ,

corresponding to the inverse matrix written above, is also meromorphic near λ1 (we remark
that some care needs to be taken when interpreting this formula; one needs to extend A−1(λ)
to a function on all ofH by setting it to be 0 on V ′; the extended A−1(λ) is still meromorphic).
We clearly still have that all coefficients of terms of negative order in S(λ) are finite rank.
S(λ) is actually an inverse to R(λ)T (λ) wherever p(λ) 6= 0. Thus S(λ)R(λ) = T−1(λ) in
the same area. But S(λ)R(λ) is meromorphic near λ1, and thus we conclude that T−1(λ)
has a meromorphic extension. Thus, T−1(λ) exists as a meromorphic family on a connected
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neighbourhood U of λ1. Since λ1 ∈ ∂Ω′, U ∩ Ω′ is non-empty. Thus, for the same reason
as in the proof of Step 4, T−1(λ) extends to a meromorphic family on U ∪ Ω′. Since U is
connected and U ∪ Ω′ is non-empty, U ∪ Ω′ is a connected open set containing λ0, and thus
λ1 ∈ U ∪ Ω′ ⊆ Ω′, as desired.

We still need to show that coefficients of terms of negative order in the meromorphic
extension are finite rank. Suppose without loss of generality that T−1(λ) does not exist as
λ = 0. Write

T (λ) =
∞∑
n=0

Tnλ
n

and

T−1(λ) =
∞∑

n=−N

Rnλ
n,

for N ≥ 1. We need to show that each R−k, k ≥ 1 has finite rank. Since T (λ) is Fredholm
for all λ, in particular T (0) = T0 is Fredholm, and so has finite-dimensional kernel. Since
T (λ)T−1(λ) = 1, the coefficient of λ−k in the product is 0 for k ≥ 1. This means that the
following equations are valid for 1 ≤ k ≤ N :

0 =
N−k∑
j=0

TjR−k−j.

Using this we inductively show that R−k has finite rank. The equation for k = N simply
reads T0R−N = 0. Since dim kerT0 < ∞, this means that R−N has finite rank. For k < N ,
we may rearrange the equation to get

T0R−k = −
N−k∑
j=1

TjR−k−j.

By induction, the right-hand side has finite-rank, and therefore so does the left. We can
write

dim imR−k = dim(kerT0 ∩ imR−k) + dim(kerT⊥0 ∩ imR−k).

The first term is finite, since dim kerT0 < ∞. Since T0R−k has finite rank, T0|kerT⊥0 ∩imR−k

has finite rank and is injective, and so the second term is finite, too.

We now turn to the proof of the proposition:

Proof. By the spectral theorem for self-adjoint operators, T − λ is invertible (and hence
analytic) off of [0,∞). Since Ω is open, it necessarily intersects points not in this set. Thus
analytic Fredholm theory applies.

Fix λ0 ∈ [0,∞) ∩ Ω for which T is not invertible, and set S = T − λ0. Since S is self-
adjoint and Fredholm, it is invertible as a map : imS = kerS⊥ → imS, and S ≡ 0 as a map
: kerS → kerS = imS⊥. We can thus picture S − µ as the matrix(

−µ 0
0 S − µ

)
,
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where the first row and column represent kerS and the second row and column represent
imS. In particular, S − µ is invertible for small µ 6= 0. Notice that S is invertible on imS.
This means that for v ∈ imS and µ 6= 0 small,

‖(S − µ)−1v‖ ≤ (‖S|−1imS‖
−1 − µ)−1‖v‖, (3)

which is uniformly bounded as µ→ 0. Write H 3 u = v+w, where v ∈ imS, and w ∈ kerS.
Then, for µ 6= 0 small,

‖(S − |µ|)−1v‖2 + ‖µ−1w‖2. (4)

For arbitrary ‖u‖ = 1, we can use (3) to bound (4) above by(
‖S|−1imS‖

−1 − |µ|
)−2

+ µ−2 . µ−2, (5)

We conclude that ‖(S − µ)−1‖ . µ−1 as µ→ 0, so ‖(T − λ)−1‖ . |λ− λ0|−1 as λ→ λ0.
But it is also clear that ‖(T − λ)−1‖ blows up like |λ − λ0|−m, where m is the order of

the pole at λ0. Indeed, we may write

‖(T − λ)−1‖ = |λ− λ0|−m‖R−m + (λ− λ0)R−n+1 + · · ·‖,

and the the series in the second factor converges to a continuous function of λ for λ near λ0
(by Cauchy-Hadamard, for instance). Thus the second factor converges to ‖R−n‖, which is
nonzero, and so we have the desired blow up.

It follows that m = 1, and so the pole is simple.
Next, write

(T − λ)−1 =
∞∑

n=−1

(λ− λ0)nRn

around a pole λ0. We have that

(T − λ)−1(T − λ) = (T − λ)(T − λ)−1 = 1

and
T − λ = (T − λ0)− (λ− λ0)

are both valid around λ0 (but of course not at it). Expand the first identity out as a
series, and looking at the n = −1, 0 terms yields R−1(T − λ0) = (T − λ0)R−1 = 0 and
R0(T − λ0) = (T − λ0)R0 = 1 + R−1. The first of the two implies that R−1 takes values in
ker(T −λ0) and acts trivially on im(T −λ0) = ker(T −λ0)⊥ (recall that im(T −λ0) is closed
since T − λ0 is Fredholm). The second identity implies that

0 = R0(T − λ0)w = w +R−1w

for w ∈ ker(T − λ0), i.e. R−1 acts as −1 times the identity on ker(T − λ0). Putting both
these things together we prove the proposition.
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